Ultrasound Knobology

Raj Dasgupta MD, FACP, FCCP, FASSM
Assistant Professor of Clinical Medicine
Pulmonary / Critical Care / Sleep Medicine
University of Southern California (USC)
Objectives

• Physics of ultrasound

• Equipment basics

• Image acquisition and adjustment
Ultrasound Physics in a Nutshell

- Ultra: Higher, greater
- Sound: Mechanical energy transmitted by pressure waves in a material medium
- Medical ultrasound: \(\geq 20,000 \text{Hz} \)
Penetration and Resolution

- Wavelength frequency determines:
 - Depth of penetration
 - Clarity of resolution

- **High frequency**:
 - Excellent resolution
 - Poor penetration
 - “Vascular probe”

- **Low frequency**:
 - Excellent penetration
 - Degraded resolution
 - “Abdominal / Cardiac”
Mechanism of Ultrasound

• Probe is composed of **pizoelectric crystals** arranged in arrays (linear, convex, etc)
• Acts as both generators and receivers of ultrasound energy
• Converts electrical energy to mechanical energy (vibrates crystals) and visa-versa
Wave Propagation

- What can happen to sound waves when they hit a tissue interface?
 - Reflect:
 - Bounces back like a mirror
 - Refract:
 - Penetrates at an angle
 - Scatter:
 - Useless result
 - Attenuate:
 - Absorption / loss of energy
Echogenicity of Targets

- **Hyperechoic**: White
 - Most sound waves reflected
 - Very few transmitted
 - Example: Bone

- **Hypoechoic**: Grey
 - Partial reflection
 - Partial transmission with refraction and attenuation
 - Example: Lymph node

- **Anechoic**: Black
 - No reflection
 - All sound waves attenuated
 - Example: Fluid

Air and Ca2+ are the enemy of ultrasound!!
Understanding the Equipment

- Operator
- "Knobology"
- Keyboard
- "Probe manipulation"
- Transducer
What is Knobology?
Purpose of Knobs

- Fix Image
 - Exam Setting
 - Depth
 - Gain

- Detect Motion
 - M-mode

- Measure
 - Calipers
 - Freeze
 - Save
 - Calculate
Image Acquisition and Adjustment
Measurements and Calculations
What is Gain?

• “Gain” is poorly understood by most beginners
• “Gain” refers to how light or dark the entire screen is
• Turning up the gain does not sharpen the image
 o It may actually make it worse
• Best analogy: Stereo amplifier
 o More gain = more loud
 o Does not help if you are tuned to static rather than a real station

A) Gain just right
B) Too much gain
C) Too little gain
What is Depth?

- Depth function is used to:
 - Magnify a key area for a procedure
 - Vascular access
 - Clarify the edges of the target and the surrounding structures
 - Diaphragm and lung
 - Best analogy:
 - Decreasing depth: zoom in
 - Increasing depth: zoom out
What is B-Mode?

- Brightness mode
- Basic 2-D ultrasound image
- Starting point for almost everything
- “Home base” button if you screw up and need to start over again
What is M-Mode?

- Motion mode
- Builds on B-mode function by adding a 3rd variable which is the change over time
- Useful for detecting subtle movements:
 - Presence or absence of sliding lung
 - IVC diameter variability
 - Cardiac output calculations
What is Color Doppler?

• Detection of vascular structures
• Builds on basic doppler by adding color to indicate direction of flow:
 - **Red**: Does not equal arterial
 - **Blue**: Does not equal venous
• Depends on which direction your probe is facing
 - **Red**: Against flow of traffic
 - **Blue**: With the flow of traffic
Understanding the Probe

- Probe selection
- Probe orientation
- Probe movements
Probe Selection

• Depends on your purpose:
 • High frequency:
 o Excellent resolution
 o Poor penetration
 o “Vascular probe”
 • Low frequency:
 o Excellent penetration
 o Degraded resolution
 o “Abdominal / Cardiac”
Probe Orientation

- Notch on the probe = Dot on the screen
- Where is the dot?
 - Cardiologist: Right upper screen
 - All others: Left upper screen
- Bottom line:
 - Notch = Dot = Cephalad
Probe Movements

• 4 Basic movements
 1. Slide up & down along the target
 o Longitudinal cuts
 2. Rotate perpendicular to target
 o Transverse cuts
 3. Fan through the target
 o Oblique cuts
 4. Pushing in towards & away from target
Summary

- Choose the correct probe
 - Linear or convex
- Choose the correct exam setting
 - Vascular, cardiac or abdominal
- Minimize air interference
 - Gel and press hard
- Pick out artifacts from true pathology
- Adjust gain
 - Turn down is usually better than turning up
- Adjust depth
 - Zoom in on your target
- Be slow and gradual in your probe movements
- Be patient